All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A library of 2D electronic material inks synthesized by liquid-metal-assisted intercalation of crystal powders

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F24%3A43929989" target="_blank" >RIV/60461373:22310/24:43929989 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.nature.com/articles/s41467-024-50697-z" target="_blank" >https://www.nature.com/articles/s41467-024-50697-z</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1038/s41467-024-50697-z" target="_blank" >10.1038/s41467-024-50697-z</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A library of 2D electronic material inks synthesized by liquid-metal-assisted intercalation of crystal powders

  • Original language description

    Solution-processable 2D semiconductor inks based on electrochemical molecular intercalation and exfoliation of bulk layered crystals using organic cations has offered an alternative pathway to low-cost fabrication of large-area flexible and wearable electronic devices. However, the growth of large-piece bulk crystals as starting material relies on costly and prolonged high-temperature process, representing a critical roadblock towards practical and large-scale applications. Here we report a general liquid-metal-assisted approach that enables the electrochemical molecular intercalation of low-cost and readily available crystal powders. The resulted solution-processable MoS2 nanosheets are of comparable quality to those exfoliated from bulk crystals. Furthermore, this method can create a rich library of functional 2D electronic inks ( &gt;50 types), including 2D wide-bandgap semiconductors of low electrical conductivity. Lastly, we demonstrated the all-solution-processable integration of 2D semiconductors with 2D conductors and 2D dielectrics for the fabrication of large-area thin-film transistors and memristors at a greatly reduced cost.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10402 - Inorganic and nuclear chemistry

Result continuities

  • Project

    <a href="/en/project/LL2101" target="_blank" >LL2101: Next Generation of 2D Monoelemental Materials</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Nature Communications

  • ISSN

    2041-1723

  • e-ISSN

    2041-1723

  • Volume of the periodical

    15

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    11

  • Pages from-to

  • UT code for WoS article

    001281268000007

  • EID of the result in the Scopus database

    2-s2.0-85199975805