Unconventional superconductivity in chiral molecule–TaS2 hybrid superlattices
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F24%3A43929992" target="_blank" >RIV/60461373:22310/24:43929992 - isvavai.cz</a>
Result on the web
<a href="https://www.nature.com/articles/s41586-024-07625-4" target="_blank" >https://www.nature.com/articles/s41586-024-07625-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41586-024-07625-4" target="_blank" >10.1038/s41586-024-07625-4</a>
Alternative languages
Result language
angličtina
Original language name
Unconventional superconductivity in chiral molecule–TaS2 hybrid superlattices
Original language description
Chiral superconductors, a unique class of unconventional superconductors in which the complex superconducting order parameter winds clockwise or anticlockwise in the momentum space1, represent a topologically non-trivial system with intrinsic time-reversal symmetry breaking (TRSB) and direct implications for topological quantum computing2,3. Intrinsic chiral superconductors are extremely rare, with only a few arguable examples, including UTe2, UPt3 and Sr2RuO4 (refs. 4–7). It has been suggested that chiral superconductivity may exist in non-centrosymmetric superconductors8,9, although such non-centrosymmetry is uncommon in typical solid-state superconductors. Alternatively, chiral molecules with neither mirror nor inversion symmetry have been widely investigated. We suggest that an incorporation of chiral molecules into conventional superconductor lattices could introduce non-centrosymmetry and help realize chiral superconductivity10. Here we explore unconventional superconductivity in chiral molecule intercalated TaS2 hybrid superlattices. Our studies reveal an exceptionally large in-plane upper critical field Bc2,|| well beyond the Pauli paramagnetic limit, a robust π-phase shift in Little–Parks measurements and a field-free superconducting diode effect (SDE). These experimental signatures of unconventional superconductivity suggest that the intriguing interplay between crystalline atomic layers and the self-assembled chiral molecular layers may lead to exotic topological materials. Our study highlights that the hybrid superlattices could lay a versatile path to artificial quantum materials by combining a vast library of layered crystals of rich physical properties with the nearly infinite variations of molecules of designable structural motifs and functional groups11. © The Author(s), under exclusive licence to Springer Nature Limited 2024.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)
Result continuities
Project
<a href="/en/project/LL2101" target="_blank" >LL2101: Next Generation of 2D Monoelemental Materials</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
NATURE
ISSN
0028-0836
e-ISSN
1476-4687
Volume of the periodical
632
Issue of the periodical within the volume
8023
Country of publishing house
GB - UNITED KINGDOM
Number of pages
6
Pages from-to
69-74
UT code for WoS article
001282532700003
EID of the result in the Scopus database
2-s2.0-85197153581