All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Arithmeticaly related ideal topologies and the infinitude of primes.

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F01%3A00004503" target="_blank" >RIV/60461373:22340/01:00004503 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Arithmeticaly related ideal topologies and the infinitude of primes.

  • Original language description

    Topologies introduced by generalized ideal structures, the so called x-ideals, are studied. Conditions implying the existence of infinitely many prime ideals are found using thses topologies. This leads to new variants of Furstenberg topological proof.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2001

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Quaestiones Mathematicae

  • ISSN

    1607-3606

  • e-ISSN

  • Volume of the periodical

    24

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    ZA - SOUTH AFRICA

  • Number of pages

    20

  • Pages from-to

    373-392

  • UT code for WoS article

  • EID of the result in the Scopus database