All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Solving Coupled Cluster Equations by the Newton Krylov Method

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F20%3A00538055" target="_blank" >RIV/61388955:_____/20:00538055 - isvavai.cz</a>

  • Result on the web

    <a href="http://hdl.handle.net/11104/0315879" target="_blank" >http://hdl.handle.net/11104/0315879</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3389/fchem.2020.590184" target="_blank" >10.3389/fchem.2020.590184</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Solving Coupled Cluster Equations by the Newton Krylov Method

  • Original language description

    We describe using the Newton Krylov method to solve the coupled cluster equation. The method uses a Krylov iterative method to compute the Newton correction to the approximate coupled cluster amplitude. The multiplication of the Jacobian with a vector, which is required in each step of a Krylov iterative method such as the Generalized Minimum Residual (GMRES) method, is carried out through a finite difference approximation, and requires an additional residual evaluation. The overall cost of the method is determined by the sum of the inner Krylov and outer Newton iterations. We discuss the termination criterion used for the inner iteration and show how to apply pre-conditioners to accelerate convergence. We will also examine the use of regularization technique to improve the stability of convergence and compare the method with the widely used direct inversion of iterative subspace (DIIS) methods through numerical examples.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10403 - Physical chemistry

Result continuities

  • Project

    <a href="/en/project/GJ19-13126Y" target="_blank" >GJ19-13126Y: Deep learning for strongly correlated systems in quantum chemistry</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Frontiers in Chemistry

  • ISSN

    2296-2646

  • e-ISSN

  • Volume of the periodical

    8

  • Issue of the periodical within the volume

    DEC 2020

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    9

  • Pages from-to

    590184

  • UT code for WoS article

    000601263300001

  • EID of the result in the Scopus database

    2-s2.0-85098203162