All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Importance of Electron Correlation on the Geometry and Electronic Structure of [2Fe-2S] Systems: A Benchmark Study of the [Fe2S2(SCH3)4]2-,3-,4-, [Fe2S2(SCys)4]2-, [Fe2S2(S-p-tol)4]2-, and [Fe2S2(S-o-xyl)4]2- Complexes

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F24%3A00602170" target="_blank" >RIV/61388955:_____/24:00602170 - isvavai.cz</a>

  • Result on the web

    <a href="https://pubs.acs.org/doi/10.1021/acs.jctc.4c00781" target="_blank" >https://pubs.acs.org/doi/10.1021/acs.jctc.4c00781</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acs.jctc.4c00781" target="_blank" >10.1021/acs.jctc.4c00781</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Importance of Electron Correlation on the Geometry and Electronic Structure of [2Fe-2S] Systems: A Benchmark Study of the [Fe2S2(SCH3)4]2-,3-,4-, [Fe2S2(SCys)4]2-, [Fe2S2(S-p-tol)4]2-, and [Fe2S2(S-o-xyl)4]2- Complexes

  • Original language description

    Iron-sulfur clusters are crucial for biological electron transport and catalysis. Obtaining accurate geometries, energetics, manifolds of their excited electronic states, and reduction energies is important to understand their role in these processes. Using a [2Fe-2S] model complex with FeII and FeIII oxidation states, which leads to different charges, i.e., [Fe2S2(SMe)4]2-,3-,4-, we benchmarked a variety of computational methodologies ranging from density functional theory (DFT) to post-Hartree-Fock methods, including complete active space self-consistent field (CASSCF), multireference configuration interaction, the second-order N-electron valence state perturbation theory (NEVPT2), and the linearized integrand approximation of adiabatic connection (AC0) approaches. Additionally, we studied three experimentally well-characterized complexes, [Fe2S2(SCys)4]2-, [Fe2S2(S-o-tol)4]2-, and [Fe2S2(S-o-xyl)4]2-, via DFT methods. We conclude that the dynamic electron correlation is important for accurately predicting the geometry of these complexes. Broken symmetry (BS) DFT correctly predicts experimental geometries of low-spin multiplicity, while CASSCF does not. However, BS-DFT significantly overestimates the difference between the low- and high-spin electronic states for a given oxidation state. At the same time, CASSCF underestimates it but provides relative energies closer to the reference NEVPT2 results. Finally, AC0 provides energetics of NEVPT2 quality with the additional advantage of being able to use large CASSCF sizes. NEVPT2 gives the best estimates of the FeIII/FeIII> FeII/FeIII (4.27 eV) and FeII/FIII> FeII/FII (7.72 eV) reduction energies. The results provide insight into the electronic structure of these complexes and assist in the understanding of their physical properties.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10403 - Physical chemistry

Result continuities

  • Project

    <a href="/en/project/EH22_008%2F0004558" target="_blank" >EH22_008/0004558: Advanced MUltiscaLe materials for key Enabling Technologies</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Chemical Theory and Computation

  • ISSN

    1549-9618

  • e-ISSN

    1549-9626

  • Volume of the periodical

    20

  • Issue of the periodical within the volume

    23

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    18

  • Pages from-to

    10406-10423

  • UT code for WoS article

    001358996100001

  • EID of the result in the Scopus database

    2-s2.0-85209720909