All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Nanoscale Membrane Domain Formation Driven by Cholesterol

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388963%3A_____%2F17%3A00475341" target="_blank" >RIV/61388963:_____/17:00475341 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.nature.com/articles/s41598-017-01247-9" target="_blank" >https://www.nature.com/articles/s41598-017-01247-9</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1038/s41598-017-01247-9" target="_blank" >10.1038/s41598-017-01247-9</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Nanoscale Membrane Domain Formation Driven by Cholesterol

  • Original language description

    Biological membranes generate specific functions through compartmentalized regions such as cholesterol-enriched membrane nanodomains that host selected proteins. Despite the biological significance of nanodomains, details on their structure remain elusive. They cannot be observed via microscopic experimental techniques due to their small size, yet there is also a lack of atomistic simulation models able to describe spontaneous nanodomain formation in sufficiently simple but biologically relevant complex membranes. Here we use atomistic simulations to consider a binary mixture of saturated dipalmitoylphosphatidylcholine and cholesterol - the ”minimal standard” for nanodomain formation. The simulations reveal how cholesterol drives the formation of fluid cholesterol-rich nanodomains hosting hexagonally packed cholesterol-poor lipid nanoclusters, both of which show registration between the membrane leaflets. The complex nanodomain substructure forms when cholesterol positions itself in the domain boundary region. Here cholesterol can also readily flip-flop across the membrane. Most importantly, replacing cholesterol with a sterol characterized by a less asymmetric ring region impairs the emergence of nanodomains. The model considered explains a plethora of controversial experimental results and provides an excellent basis for further computational studies on nanodomains. Furthermore, the results highlight the role of cholesterol as a key player in the modulation of nanodomains for membrane protein function.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10403 - Physical chemistry

Result continuities

  • Project

    <a href="/en/project/GBP208%2F12%2FG016" target="_blank" >GBP208/12/G016: Controlling structure and function of biomolecules at the molecular scale: theory meets experiment</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Scientific Reports

  • ISSN

    2045-2322

  • e-ISSN

  • Volume of the periodical

    7

  • Issue of the periodical within the volume

    Apr 25

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    10

  • Pages from-to

  • UT code for WoS article

    000400104200032

  • EID of the result in the Scopus database

    2-s2.0-85018985901