All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

SmSP2: A serine protease secreted by the blood fluke pathogen Schistosoma mansoni with anti-hemostatic properties

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388963%3A_____%2F18%3A00491001" target="_blank" >RIV/61388963:_____/18:00491001 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11110/18:10376421 RIV/00216208:11310/18:10376421

  • Result on the web

    <a href="http://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0006446" target="_blank" >http://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0006446</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1371/journal.pntd.0006446" target="_blank" >10.1371/journal.pntd.0006446</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    SmSP2: A serine protease secreted by the blood fluke pathogen Schistosoma mansoni with anti-hemostatic properties

  • Original language description

    Background: Serine proteases are important virulence factors for many pathogens. Recently, we discovered a group of trypsin-like serine proteases with domain organization unique to flatworm parasites and containing a thrombospondin type 1 repeat (TSR-1). These proteases are recognized as antigens during host infection and may prove useful as anthelminthic vaccines, however their molecular characteristics are under-studied. Here, we characterize the structural and proteolytic attributes of serine protease 2 (SmSP2) from Schistosoma mansoni, one of the major species responsible for the tropical infectious disease, schistosomiasis. Methodology/Principal findings: SmSP2 comprises three domains: a histidine stretch, TSR-1 and a serine protease domain. The cleavage specificity of recombinant SmSP2 was determined using positional scanning and multiplex combinatorial libraries and the determinants of specificity were identified with 3D homology models, demonstrating a trypsin-like endopeptidase mode of action. SmSP2 displayed restricted proteolysis on protein substrates. It activated tissue plasminogen activator and plasminogen as key components of the fibrinolytic system, and released the vasoregulatory peptide, kinin, from kininogen. SmSP2 was detected in the surface tegument, esophageal glands and reproductive organs of the adult parasite by immunofluorescence microscopy, and in the excretory/secretory products by immunoblotting. Conclusions/Significance: The data suggest that SmSP2 is secreted, functions at the host-parasite interface and contributes to the survival of the parasite by manipulating host vasodilatation and fibrinolysis. SmSP2 may be, therefore, a potential target for anti-schistosomal therapy.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10608 - Biochemistry and molecular biology

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    PLoS Neglected Tropical Diseases

  • ISSN

    1935-2735

  • e-ISSN

  • Volume of the periodical

    12

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    26

  • Pages from-to

  • UT code for WoS article

    000433487700071

  • EID of the result in the Scopus database

    2-s2.0-85046346355