All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Lithocholic acid inhibits P2X2 and potentiates P2X4 receptor channel gating

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388963%3A_____%2F20%3A00532987" target="_blank" >RIV/61388963:_____/20:00532987 - isvavai.cz</a>

  • Alternative codes found

    RIV/67985823:_____/20:00532987 RIV/00216208:11310/20:10415587

  • Result on the web

    <a href="https://doi.org/10.1016/j.jsbmb.2020.105725" target="_blank" >https://doi.org/10.1016/j.jsbmb.2020.105725</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jsbmb.2020.105725" target="_blank" >10.1016/j.jsbmb.2020.105725</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Lithocholic acid inhibits P2X2 and potentiates P2X4 receptor channel gating

  • Original language description

    The family of ATP-gated purinergic P2X receptors comprises seven bunits (P2X1-7) that are unevenly distributed in the central and peripheral nervous systems as well as other organs. Endogenous modulators of P2X receptors are phospholipids, steroids and neurosteroids. Here, we analyzed whether bile acids, which are natural products derived from cholesterol, affect P2X receptor activity. We examined the effects of primary and secondary bile acids and newly synthesized derivatives of lithocholic acid on agonist-induced responses in HEK293T cells expressing rat P2X2, P2X4 and P2X7 receptors. Electrophysiology revealed that low micromolar concentrations of lithocholic acid and its structural analog 4-dafachronic acid strongly inhibit ATP-stimulated P2X2 but potentiate P2X4 responses, whereas primary bile acids and other secondary bile acids exhibit no or reduced effects only at higher concentrations. Agonist-stimulated P2X7 responses are significantly potentiated by lithocholic acid at moderate concentrations. Structural modifications of lithocholic acid at positions C-3, C-5 or C-17 abolish both inhibitory and potentiation effects to varying degrees, and the 3 alpha-hydroxy group contributes to the ability of the molecule to switch between potentiation and inhibition. Lithocholic acid allosterically modulates P2X2 and P2X4 receptor sensitivity to ATP, reduces the rate of P2X4 receptor desensitization and antagonizes the effect of ivermectin on P2X4 receptor deactivation. Alanine-scanning mutagenesis of the upper halve of P2X4 transmembrane domain-1 revealed that residues Phe48, Val43 and Tyr42 are important for potentiating effect of lithocholic acid, indicating that modulatory sites for lithocholic acid and ivermectin partly overlap. Lithocholic acid also inhibits ATP-evoked currents in pituitary gonadotrophs expressing native P2X2, and potentiates ATP currents in nonidentified pituitary cells expressing P2X4 receptors. These results indicate that lithocholic acid is a bioactive steroid that may help to further unveil the importance of the P2X2, and P2X4 receptors in many physiological processes.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    30103 - Neurosciences (including psychophysiology)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Steroid Biochemistry and Molecular Biology

  • ISSN

    0960-0760

  • e-ISSN

  • Volume of the periodical

    202

  • Issue of the periodical within the volume

    Sep

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    15

  • Pages from-to

    105725

  • UT code for WoS article

    000568822300006

  • EID of the result in the Scopus database

    2-s2.0-85089244463