All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Green alga Chlamydomonas reinhardtii can effectively remove diclofenac from the water environment-A new perspective on biotransformation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388971%3A_____%2F23%3A00574675" target="_blank" >RIV/61388971:_____/23:00574675 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0304389423008531?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0304389423008531?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jhazmat.2023.131570" target="_blank" >10.1016/j.jhazmat.2023.131570</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Green alga Chlamydomonas reinhardtii can effectively remove diclofenac from the water environment-A new perspective on biotransformation

  • Original language description

    The use of unicellular algae to remove xenobiotics (including drugs) from wastewaters is one of the rapidly developing areas of environmental protection. Numerous data indicate that for efficient phycoremediation three processes are important, i.e. biosorption, bioaccumulation, and biotransformation. Although biosorption and bioaccumulation do not raise any serious doubts, biotransformation is more problematic since its products can be potentially more toxic than the parent compounds posing a threat to organisms living in a given environment, including organisms that made this transformation. Thus, two questions need to be answered before the proper algae strain is chosen for phycoremediation, namely what metabolites are produced during biotransformation, and how resistant is the analyzed strain to a mixture of parent compound and metabolites that appear over the course of culture? In this work, we evaluated the remediation potential of the model green alga Chlamydomonas reinhardtii in relation to non-steroidal anti-inflammatory drugs (NSAIDs), as exemplified by diclofenac. To achieve this, we analysed the susceptibility of C. reinhardtii to diclofenac as well as its capability to biosorption, bioaccumulation, and biotransformation of the drug. We have found that even at a relatively high concentration of diclofenac the algae maintained their vitality and were able to remove (37.7%) DCF from the environment. A wide range of phase I and II metabolites of diclofenac (38 transformation products) was discovered, with many of them characteristic rather for animal and bacterial biochemical pathways than for plant metabolism. Due to such a large number of detected products, 18 of which were not previously reported, the proposed scheme of diclofenac transformation by C. reinhardtii not only significantly contributes to broadening the knowledge in this field, but also allows to suggest possible pathways of degradation of xenobiotics with a similar structure. It is worth pointing out that a decrease in the level of diclofenac in the media observed in this study cannot be fully explained by biotransformation (8.4%). The mass balance analysis indicates that other processes (total 22%), such as biosorption, a non-extractable residue formation, or complete decomposition in metabolic cycles can be involved in the diclofenac disappearance, and those findings open the prospects of further research.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10511 - Environmental sciences (social aspects to be 5.7)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Hazardous Materials

  • ISSN

    0304-3894

  • e-ISSN

    1873-3336

  • Volume of the periodical

    455

  • Issue of the periodical within the volume

    AUGUST 5

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    13

  • Pages from-to

    131570

  • UT code for WoS article

    001012782700001

  • EID of the result in the Scopus database

    2-s2.0-85159144620