Linear representation of energy-dependent Hamiltonians
Result description
Quantum mechanics abounds in models with Hamiltonian operators which are energy-dependent. A linearization of the underlying Schrodinger equation with H = H(E) is proposed here via an introduction of a doublet of separate energy-independent representatives K and L of the respective right and left action of H(E). Both these new operators are non-Hermitian so that our formalism admits a natural extension to non-Hermitian initial H(E)s. Its applicability may range from pragmatic phenomenology and variational calculations (where all the subspace-projected effective operators depend on energy by construction) up to perturbation theory and quasi-exact constructions
Keywords
energy-dependent HamiltoniansQuasi-Hermitian linear representation
The result's identifiers
Result code in IS VaVaI
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Linear representation of energy-dependent Hamiltonians
Original language description
Quantum mechanics abounds in models with Hamiltonian operators which are energy-dependent. A linearization of the underlying Schrodinger equation with H = H(E) is proposed here via an introduction of a doublet of separate energy-independent representatives K and L of the respective right and left action of H(E). Both these new operators are non-Hermitian so that our formalism admits a natural extension to non-Hermitian initial H(E)s. Its applicability may range from pragmatic phenomenology and variational calculations (where all the subspace-projected effective operators depend on energy by construction) up to perturbation theory and quasi-exact constructions
Czech name
Lineární reprezentace Hamiltoniánů závislých na energii
Czech description
Hamiltoniánům H(E) závislým na energii E je přiřazena dvojice K a L (= pravý a levý) nehermitovských reprezentantů nezávislých na energii. Formalismus snadno připouští i nehermitovost výchozího Hamiltoniánu. Zdůrazněna široká aplikovatelnost.
Classification
Type
Jx - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2004
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Physics Letters
ISSN
0375-9601
e-ISSN
—
Volume of the periodical
326
Issue of the periodical within the volume
1/2
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
7
Pages from-to
70-76
UT code for WoS article
—
EID of the result in the Scopus database
—
Result type
Jx - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP
BE - Theoretical physics
Year of implementation
2004