A product formula related to quantum zeno dynamics
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F05%3A00000990" target="_blank" >RIV/61389005:_____/05:00000990 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
A product formula related to quantum zeno dynamics
Original language description
We prove a product formula which involves the unitary group generated by a semibounded self-adjoint operator and an orthogonal projection P on a separable Hilbert space H, with the convergence in L-loc(2)(R; H). It gives a partial answer to the questionabout existence of the limit which describes quantum Zeno dynamics in the subspace Ran P. The convergence in H is demonstrated in the case of a finite-dimensional P. The main result is illustrated in the example where the projection corresponds to a domain in R-d and the unitary group is the free Schrodinger evolution.
Czech name
Součinná formule odpovídající kvantové zenonovské dynamice
Czech description
Dotazujeme součinovou formuli, jež zahrnuje unitární grupu generovanou zdola ozmezený samosdružený operátor a ortogonální projektor na separabilním Hilbertově prostoru.
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/IAA100480501" target="_blank" >IAA100480501: Solvable models of nanosystems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2005
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Annales Henri Poincare
ISSN
1424-0637
e-ISSN
—
Volume of the periodical
6
Issue of the periodical within the volume
2
Country of publishing house
CH - SWITZERLAND
Number of pages
21
Pages from-to
195-215
UT code for WoS article
—
EID of the result in the Scopus database
—