All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

(Heisenberg-)Weyl Algebras, Segal-Bargmann Transform and Representations of Poincaré Groups

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F19%3A00331494" target="_blank" >RIV/68407700:21340/19:00331494 - isvavai.cz</a>

  • Result on the web

    <a href="http://hdl.handle.net/10467/82107" target="_blank" >http://hdl.handle.net/10467/82107</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1742-6596/1194/1/012043" target="_blank" >10.1088/1742-6596/1194/1/012043</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    (Heisenberg-)Weyl Algebras, Segal-Bargmann Transform and Representations of Poincaré Groups

  • Original language description

    In a recent paper (Havlíček M, Kotrbatý J, Moylan P and Pošta S 2018 J. Math. Phys. 59 2 021702 1-23) we described a novel treatment of the unitary irreducible representations of the Poincaré groups in 2, 3 and 4 space-time dimensions as unitary operators on the representation spaces of the Schrödinger representation of the Heisenberg-Weyl algebra W(r,R) of index r = 1, 2, and 3, respectively. Here we relate this approach to the usual method of describing the representations of these Poincaré groups, i.e. the Wigner-Mackey construction.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Journal of Physics: Conference Series

  • ISBN

  • ISSN

    1742-6596

  • e-ISSN

    1742-6596

  • Number of pages

    10

  • Pages from-to

  • Publisher name

    IOP Publishing Ltd.

  • Place of publication

    Bristol

  • Event location

    Prague

  • Event date

    Jul 9, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article