Construction of representations of Poincaré group using Lie fields
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F18%3A00326015" target="_blank" >RIV/68407700:21340/18:00326015 - isvavai.cz</a>
Result on the web
<a href="https://aip.scitation.org/doi/full/10.1063/1.4993153" target="_blank" >https://aip.scitation.org/doi/full/10.1063/1.4993153</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/1.4993153" target="_blank" >10.1063/1.4993153</a>
Alternative languages
Result language
angličtina
Original language name
Construction of representations of Poincaré group using Lie fields
Original language description
In this paper, we give an explicit construction of the unitary irreducible representations of the Poincaré groups in 2, 3, and 4 space-time dimensions on Hilbert spaces associated with the Schrödinger representation of the Weyl algebra for n = 1, 2, and 3, respectively. Our method of constructing the representations uses extension and localization of the enveloping algebras associated with these Weyl algebras and the Poincaré algebras.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Physics
ISSN
0022-2488
e-ISSN
1089-7658
Volume of the periodical
59
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
23
Pages from-to
—
UT code for WoS article
000426583800011
EID of the result in the Scopus database
2-s2.0-85042606116