All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Construction of representations of Poincaré group using Lie fields

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F18%3A00326015" target="_blank" >RIV/68407700:21340/18:00326015 - isvavai.cz</a>

  • Result on the web

    <a href="https://aip.scitation.org/doi/full/10.1063/1.4993153" target="_blank" >https://aip.scitation.org/doi/full/10.1063/1.4993153</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/1.4993153" target="_blank" >10.1063/1.4993153</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Construction of representations of Poincaré group using Lie fields

  • Original language description

    In this paper, we give an explicit construction of the unitary irreducible representations of the Poincaré groups in 2, 3, and 4 space-time dimensions on Hilbert spaces associated with the Schrödinger representation of the Weyl algebra for n = 1, 2, and 3, respectively. Our method of constructing the representations uses extension and localization of the enveloping algebras associated with these Weyl algebras and the Poincaré algebras.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Mathematical Physics

  • ISSN

    0022-2488

  • e-ISSN

    1089-7658

  • Volume of the periodical

    59

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    23

  • Pages from-to

  • UT code for WoS article

    000426583800011

  • EID of the result in the Scopus database

    2-s2.0-85042606116