Discrete quantum square well of the first kind
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F11%3A00365427" target="_blank" >RIV/61389005:_____/11:00365427 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.physleta.2011.05.027" target="_blank" >http://dx.doi.org/10.1016/j.physleta.2011.05.027</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.physleta.2011.05.027" target="_blank" >10.1016/j.physleta.2011.05.027</a>
Alternative languages
Result language
angličtina
Original language name
Discrete quantum square well of the first kind
Original language description
A new exactly solvable cryptohermitian quantum chain model is proposed and analyzed. Its discrete-square-well-like Hamiltonian with the real spectrum possesses a manifestly non-Hermitian form. It is only made self-adjoint by the constructive transition to an ad hoc Hilbert space. Such a space (i.e., the closed form of its inner product, i.e., the "metric" Theta) varies with an N-plet of optional parameters. The simplicity of our model enables one to obtain the complete family of these physics-determining metrics Theta in a user-friendly band-matrix closed form. (C) 2011 Elsevier B.V. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP203%2F11%2F1433" target="_blank" >GAP203/11/1433: The concept of cryptohermiticity in Quantum Theory and its applications</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Physics Letters. A
ISSN
0375-9601
e-ISSN
—
Volume of the periodical
375
Issue of the periodical within the volume
25
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
8
Pages from-to
2503-2509
UT code for WoS article
000292420400005
EID of the result in the Scopus database
—