NON-SELF-ADJOINT GRAPHS
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F15%3A00443536" target="_blank" >RIV/61389005:_____/15:00443536 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1090/S0002-9947-2014-06432-5" target="_blank" >http://dx.doi.org/10.1090/S0002-9947-2014-06432-5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1090/S0002-9947-2014-06432-5" target="_blank" >10.1090/S0002-9947-2014-06432-5</a>
Alternative languages
Result language
angličtina
Original language name
NON-SELF-ADJOINT GRAPHS
Original language description
On finite metric graphs we consider Laplace operators, subject to various classes of non-self-adjoint boundary conditions imposed at graph vertices. We investigate spectral properties, existence of a Riesz basis of projectors and similarity transforms toself-adjoint Laplacians. Among other things, we describe a simple way to relate the similarity transforms between Laplacians on certain graphs with elementary similarity transforms between matrices defining the boundary conditions.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP203%2F11%2F0701" target="_blank" >GAP203/11/0701: Guided Quantum Dynamics</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
American Mathematical Society. Transactions
ISSN
0002-9947
e-ISSN
—
Volume of the periodical
367
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
37
Pages from-to
2921-2957
UT code for WoS article
000351858000023
EID of the result in the Scopus database
2-s2.0-84921722605