The collapse of quasi-self-adjointness at the exceptional points of a PT-symmetric model with complex Robin boundary conditions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F21%3A00353908" target="_blank" >RIV/68407700:21340/21:00353908 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1088/1751-8121/ac22e5" target="_blank" >https://doi.org/10.1088/1751-8121/ac22e5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1751-8121/ac22e5" target="_blank" >10.1088/1751-8121/ac22e5</a>
Alternative languages
Result language
angličtina
Original language name
The collapse of quasi-self-adjointness at the exceptional points of a PT-symmetric model with complex Robin boundary conditions
Original language description
We consider non-self-adjoint PT-symmetric operators of Sturm–Liouville type with complex boundary conditions. We study the existence of a similarity transformation to a self-adjoint operator in dependence on the boundary parameter. We determine the values of the parameter for which the model is quasi-self-adjoint and for such values we find the self-adjoint counterpart in a closed form. In the cases when the similar self-adjoint operator does not exist we construct a generalized similarity transformation by taking the root vectors into account and find the similar operator in the closed form likewise.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GX20-17749X" target="_blank" >GX20-17749X: New challenges for spectral theory: geometry, advanced materials and complex fields</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Physics A: Mathematical and Theoretical
ISSN
1751-8113
e-ISSN
1751-8121
Volume of the periodical
54
Issue of the periodical within the volume
41
Country of publishing house
GB - UNITED KINGDOM
Number of pages
14
Pages from-to
—
UT code for WoS article
000697646400001
EID of the result in the Scopus database
2-s2.0-85116546039