All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Spectral analysis of the diffusion operator with random jumps from the boundary

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F16%3A00466585" target="_blank" >RIV/61389005:_____/16:00466585 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/s00209-016-1677-y" target="_blank" >http://dx.doi.org/10.1007/s00209-016-1677-y</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00209-016-1677-y" target="_blank" >10.1007/s00209-016-1677-y</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Spectral analysis of the diffusion operator with random jumps from the boundary

  • Original language description

    Using an operator-theoretic framework in a Hilbert-space setting, we perform a detailed spectral analysis of the one-dimensional Laplacian in a bounded interval, subject to specific non-self-adjoint connected boundary conditions modelling a random jump from the boundary to a point inside the interval. In accordance with previous works, we find that all the eigenvalues are real. As the new results, we derive and analyse the adjoint operator, determine the geometric and algebraic multiplicities of the eigenvalues, write down formulae for the eigenfunctions together with the generalised eigenfunctions and study their basis properties. It turns out that the latter heavily depend on whether the distance of the interior point to the centre of the interval divided by the length of the interval is rational or irrational. Finally, we find a closed formula for the metric operator that provides a similarity transform of the problem to a self-adjoint operator.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BE - Theoretical physics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA14-06818S" target="_blank" >GA14-06818S: Rigorous Methods in Quantum Dynamics: Geometry and Magnetic Fields</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematische Zeitschrift

  • ISSN

    0025-5874

  • e-ISSN

  • Volume of the periodical

    284

  • Issue of the periodical within the volume

    3-4

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    24

  • Pages from-to

    877-900

  • UT code for WoS article

    000386769300008

  • EID of the result in the Scopus database

    2-s2.0-84968616677