Spectral analysis of the diffusion operator with random jumps from the boundary
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F16%3A00466585" target="_blank" >RIV/61389005:_____/16:00466585 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00209-016-1677-y" target="_blank" >http://dx.doi.org/10.1007/s00209-016-1677-y</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00209-016-1677-y" target="_blank" >10.1007/s00209-016-1677-y</a>
Alternative languages
Result language
angličtina
Original language name
Spectral analysis of the diffusion operator with random jumps from the boundary
Original language description
Using an operator-theoretic framework in a Hilbert-space setting, we perform a detailed spectral analysis of the one-dimensional Laplacian in a bounded interval, subject to specific non-self-adjoint connected boundary conditions modelling a random jump from the boundary to a point inside the interval. In accordance with previous works, we find that all the eigenvalues are real. As the new results, we derive and analyse the adjoint operator, determine the geometric and algebraic multiplicities of the eigenvalues, write down formulae for the eigenfunctions together with the generalised eigenfunctions and study their basis properties. It turns out that the latter heavily depend on whether the distance of the interior point to the centre of the interval divided by the length of the interval is rational or irrational. Finally, we find a closed formula for the metric operator that provides a similarity transform of the problem to a self-adjoint operator.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA14-06818S" target="_blank" >GA14-06818S: Rigorous Methods in Quantum Dynamics: Geometry and Magnetic Fields</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematische Zeitschrift
ISSN
0025-5874
e-ISSN
—
Volume of the periodical
284
Issue of the periodical within the volume
3-4
Country of publishing house
DE - GERMANY
Number of pages
24
Pages from-to
877-900
UT code for WoS article
000386769300008
EID of the result in the Scopus database
2-s2.0-84968616677