Perspectives on General Left-Definite Theory
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F21%3A00548941" target="_blank" >RIV/61389005:_____/21:00548941 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-030-75425-9_6" target="_blank" >http://dx.doi.org/10.1007/978-3-030-75425-9_6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-75425-9_6" target="_blank" >10.1007/978-3-030-75425-9_6</a>
Alternative languages
Result language
angličtina
Original language name
Perspectives on General Left-Definite Theory
Original language description
In 2002, Littlejohn and Wellman developed a celebrated general left-definite theory for semi-bounded self-adjoint operators with many applications to differential operators. The theory starts with a semi-bounded self-adjoint operator and constructs a continuum of related Hilbert spaces and self-adjoint operators that are intimately related with powers of the initial operator. The development spurred a flurry of activity in the field that is still ongoing today. The main goal of this expository (with the exception of Proposition 1) manuscript is to compare and contrast the complementary theories of general left-definite theory, the Birman–Krein–Vishik (BKV) theory of self-adjoint extensions and singular perturbation theory. In this way, we hope to encourage interest in left-definite theory as well as point out directions of potential growth where the fields are interconnected. We include several related open questions to further these goals.
Czech name
—
Czech description
—
Classification
Type
C - Chapter in a specialist book
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Book/collection name
Operator Theory: Advances and Applications
ISBN
978-3-030-75425-9
Number of pages of the result
20
Pages from-to
69-89
Number of pages of the book
382
Publisher name
Springer Verlag GmbH
Place of publication
Heidelberg
UT code for WoS chapter
—