Which metrics are consistent with a given pseudo-hermitian matrix?
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F22%3A00553621" target="_blank" >RIV/61389005:_____/22:00553621 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1063/5.0079385" target="_blank" >https://doi.org/10.1063/5.0079385</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0079385" target="_blank" >10.1063/5.0079385</a>
Alternative languages
Result language
angličtina
Original language name
Which metrics are consistent with a given pseudo-hermitian matrix?
Original language description
Given a diagonalizable N x N matrix H, whose non-degenerate spectrum consists of p pairs of complex conjugate eigenvalues and additional N - 2p real eigenvalues, we determine all metrics M, of all possible signatures, with respect to which H is pseudo-hermitian. In particular, we show that any compatible M must have p pairs of opposite eigenvalues in its spectrum so that p is the minimal number of both positive and negative eigenvalues of M. We provide explicit parameterization of the space of all admissible metrics and show that it is topologically a p-dimensional torus tensored with an appropriate power of the group Z(2).
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Physics
ISSN
0022-2488
e-ISSN
1089-7658
Volume of the periodical
63
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
5
Pages from-to
013505
UT code for WoS article
000747485800004
EID of the result in the Scopus database
2-s2.0-85123572712