General δ-shell interactions for the two-dimensional Dirac operator: self-adjointness and approximation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F23%3A00574839" target="_blank" >RIV/61389005:_____/23:00574839 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21340/23:00369759
Result on the web
<a href="https://doi.org/10.4171/rmi/1354" target="_blank" >https://doi.org/10.4171/rmi/1354</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4171/RMI/1354" target="_blank" >10.4171/RMI/1354</a>
Alternative languages
Result language
angličtina
Original language name
General δ-shell interactions for the two-dimensional Dirac operator: self-adjointness and approximation
Original language description
In this work we consider the two-dimensional Dirac operator with general local singular interactions supported on a closed curve. A systematic study of the interaction is performed by decomposing it into a linear combination of four elementary interactions: electrostatic, Lorentz scalar, magnetic, and a fourth one which can be absorbed by using unitary transformations. We address the self-adjointness and the spectral description of the underlying Dirac operator. In the non-critical case, we do so by providing a boundary triple, and in the critical purely magnetic case, by exploiting the phenomenon of confinement and super-symmetry. Moreover, we justify our model by showing that Dirac operators with singular interactions are limits in the strong resolvent sense of Dirac operators with regular potentials.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA21-07129S" target="_blank" >GA21-07129S: New Effects from Time-Reversal Non-Invariance</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Revista Matematica Iberoamericana
ISSN
0213-2230
e-ISSN
—
Volume of the periodical
39
Issue of the periodical within the volume
4
Country of publishing house
DE - GERMANY
Number of pages
50
Pages from-to
1443-1492
UT code for WoS article
001044706500010
EID of the result in the Scopus database
2-s2.0-85166117067