Non-self-adjoint relativistic point interaction in one dimension
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F22%3A00360593" target="_blank" >RIV/68407700:21340/22:00360593 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.jmaa.2022.126536" target="_blank" >https://doi.org/10.1016/j.jmaa.2022.126536</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmaa.2022.126536" target="_blank" >10.1016/j.jmaa.2022.126536</a>
Alternative languages
Result language
angličtina
Original language name
Non-self-adjoint relativistic point interaction in one dimension
Original language description
The one-dimensional Dirac operator with a singular interaction term which is formally given by A⊗|δ0><δ0|, where A is an arbitrary 2x2 matrix and δ0 stands for the Dirac distribution, is introduced as a closed not necessarily self-adjoint operator. We study its spectral properties, find its non-relativistic limit and also address the question of regular approximations. In particular, we show that, contrary to the case of local approximations, for non-local approximating potentials, coupling constants are not renormalized in the limit.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GX20-17749X" target="_blank" >GX20-17749X: New challenges for spectral theory: geometry, advanced materials and complex fields</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Analysis and Applications
ISSN
0022-247X
e-ISSN
1096-0813
Volume of the periodical
516
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
28
Pages from-to
1-28
UT code for WoS article
000911193700017
EID of the result in the Scopus database
2-s2.0-85135094434