Inverse problems for locally perturbed lattices – Discrete Hamiltonian and quantum graph
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F24%3A00618299" target="_blank" >RIV/61389005:_____/24:00618299 - isvavai.cz</a>
Result on the web
<a href="https://ahl.centre-mersenne.org/articles/10.5802/ahl.201/" target="_blank" >https://ahl.centre-mersenne.org/articles/10.5802/ahl.201/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5802/ahl.201" target="_blank" >10.5802/ahl.201</a>
Alternative languages
Result language
angličtina
Original language name
Inverse problems for locally perturbed lattices – Discrete Hamiltonian and quantum graph
Original language description
We consider the inverse scattering problems for two types of Schrödinger operators on locally perturbed periodic lattices. For the discrete Hamiltonian, the knowledge of the S-matrix for all energies determines the graph structure and the coefficients of the Hamiltonian. For locally perturbed equilateral metric graphs, the knowledge of the S-matrix for all energies determines the graph structure.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA21-07129S" target="_blank" >GA21-07129S: New Effects from Time-Reversal Non-Invariance</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Annales Henri Lebesgue
ISSN
2644-9463
e-ISSN
2644-9463
Volume of the periodical
7
Issue of the periodical within the volume
1
Country of publishing house
FR - FRANCE
Number of pages
39
Pages from-to
267-305
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-86000326118