All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Superparamagnetic Fe3O4 nanoparticles: synthesis by thermal decomposition of iron(III) glucuronate and application in magnetic resonance imaging

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389013%3A_____%2F16%3A00458269" target="_blank" >RIV/61389013:_____/16:00458269 - isvavai.cz</a>

  • Alternative codes found

    RIV/00023001:_____/16:00059845

  • Result on the web

    <a href="http://dx.doi.org/10.1021/acsami.5b12720" target="_blank" >http://dx.doi.org/10.1021/acsami.5b12720</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acsami.5b12720" target="_blank" >10.1021/acsami.5b12720</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Superparamagnetic Fe3O4 nanoparticles: synthesis by thermal decomposition of iron(III) glucuronate and application in magnetic resonance imaging

  • Original language description

    Monodisperse superparamagnetic Fe3O4 nanoparticles coated with oleic acid were prepared by thermal decomposition of Fe(III) glucuronate. The shape, size, and particle size distribution were controlled by varying the reaction parameters, such as the reaction temperature, concentration of the stabilizer, and type of high-boiling-point solvents. Magnetite particles were characterized by transmission electron microscopy (TEM), as well as electron diffraction (SAED), X-ray diffraction (XRD), dynamic light scattering (DLS), and magnetometer measurements. The particle coating was analyzed by atomic absorption spectroscopy (AAS) and attenuated total reflection (ATR) Fourier transform infrared spectroscopy (FTIR) spectroscopy. To make the Fe3O4 nanoparticles dispersible in water, the particle surface was modified with α-carboxyl-ω-bis(ethane-2,1-diyl)phosphonic acid-terminated poly(3-O-methacryloyl-α-D-glucopyranose) (PMG–P). For future practical biomedical applications, nontoxicity plays a key role, and the PMG–P&Fe3O4 nanoparticles were tested on rat mesenchymal stem cells to determine the particle toxicity and their ability to label the cells. MR relaxometry confirmed that the PMG–P&Fe3O4 nanoparticles had high relaxivity but rather low cellular uptake. Nevertheless, the labeled cells still provided visible contrast enhancement in the magnetic resonance image. In addition, the cell viability was not compromised by the nanoparticles. Therefore, the PMG–P&Fe3O4 nanoparticles have the potential to be used in biomedical applications, especially as contrast agents for magnetic resonance imaging.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    CD - Macromolecular chemistry

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ACS Applied Materials and Interfaces

  • ISSN

    1944-8244

  • e-ISSN

  • Volume of the periodical

    8

  • Issue of the periodical within the volume

    11

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    10

  • Pages from-to

    7238-7247

  • UT code for WoS article

    000372946600054

  • EID of the result in the Scopus database

    2-s2.0-84962129065