All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Polyelectrolyte pH-responsive protein-containing nanoparticles: the physicochemical supramolecular approach

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389013%3A_____%2F17%3A00469709" target="_blank" >RIV/61389013:_____/17:00469709 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1021/acs.langmuir.6b03778" target="_blank" >http://dx.doi.org/10.1021/acs.langmuir.6b03778</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acs.langmuir.6b03778" target="_blank" >10.1021/acs.langmuir.6b03778</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Polyelectrolyte pH-responsive protein-containing nanoparticles: the physicochemical supramolecular approach

  • Original language description

    We report on the physicochemical properties and self-assembly behavior of novel efficient pH-sensitive nanocontainers based on the Food and Drug Administration-approved anionic polymer Eudragit L100-55 (poly(methacrylic acid-co-ethyl acrylate) 1:1) and nonionic surfactant Brij98. The features of the interaction between Eudragit L100-55 and Brij98 at different pH values and their optimal ratio for nanoparticle formation were studied using isothermal titration calorimetry. The influence of the polymer-to-surfactant ratio on the size and structure of particles was studied at different pH values using dynamic light scattering and small-angle X-ray scattering methods. It was shown that stable nanoparticles are formed at acidic pH at polymer-to-surfactant molar ratios from 1:43 to 1:139. Trypsin was successfully encapsulated into Eudragit-Brij98 nanoparticles as a model bioactive component. The loading efficiency was determined by labeling trypsin with radioactive iodine-125. Eudragit-Brij98 nanoparticles effectively protected trypsin against pepsin digestion. The results showed that trypsin encapsulated into novel pH-sensitive nanocontainers retained more than 50% of its activity after treatment with pepsin compared with nonencapsulated trypsin. The described concept will contribute both to understanding the principles of and designing next-generation nanocontainers.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10403 - Physical chemistry

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Langmuir

  • ISSN

    0743-7463

  • e-ISSN

  • Volume of the periodical

    33

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    9

  • Pages from-to

    764-772

  • UT code for WoS article

    000392888600012

  • EID of the result in the Scopus database

    2-s2.0-85010338613