Ultralow-Fouling Behavior of Biorecognition Coatings Based on Carboxy-Functional Brushes of Zwitterionic Homo- and Copolymers in Blood Plasma: Functionalization Matters
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389013%3A_____%2F17%3A00479511" target="_blank" >RIV/61389013:_____/17:00479511 - isvavai.cz</a>
Alternative codes found
RIV/67985882:_____/17:00479511
Result on the web
<a href="http://dx.doi.org/10.1021/acs.analchem.6b04731" target="_blank" >http://dx.doi.org/10.1021/acs.analchem.6b04731</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.analchem.6b04731" target="_blank" >10.1021/acs.analchem.6b04731</a>
Alternative languages
Result language
angličtina
Original language name
Ultralow-Fouling Behavior of Biorecognition Coatings Based on Carboxy-Functional Brushes of Zwitterionic Homo- and Copolymers in Blood Plasma: Functionalization Matters
Original language description
Fouling from complex biological fluids such as blood plasma to biorecognition element (BRE)-functionalized coatings hampers the use of affinity biosensor technologies in medical diagnostics. Here, we report the effects the molecular mechanisms involved in functionalization of low-fouling carboxy-functional coatings have on the BRE capacity and resistance to fouling from blood plasma. The specific mechanisms of EDC/NHS activation of carboxy groups, BRE attachment, and deactivation of residual activated groups on recently developed ultra-low-fouling carboxybetaine polymer and copolymer brushes (pCB) as well as conventional carboxy-terminated oligo(ethylene glycol)-based alkanethiolate self-assembled monolayers (OEG-SAMs) are studied using the polarization modulation infrared reflection/absorption spectroscopy, X-ray photoelectron spectroscopy, and surface plasmon resonance methods. It is shown that the fouling resistance of BRE-functionalized pCB coatings is strongly influenced by a deactivation method affecting the ultra-low-fouling molecular structure of the brush and surface charges. It is revealed that, in contrast to free carboxy-group-terminated OEG-SAMs, only a partial deactivation of EDC/NHS-activated zwitterionic carboxy groups by spontaneous hydrolysis is possible in the pCB brushes. The fouling resistance of activated/BREfunctionalized pCB is shown to be recovered only by covalent attachment of amino acid deactivation agents to residual activated carboxy groups of pCB. The developed deactivation procedure is further combined with ultra-low-fouling brushes of random copolymer carboxybetaine methacrylamide (CBMAA) and N-(2-hydroxypropyl) methacrylamide (HPMAA) with optimized CBMAA content (15%) providing a BRE-functionalized coating with superior fouling resistance over various carboxy-functional low-fouling coatings including homopolymer pCB brushes and OEG-SAMs. The biorecognition capabilities of pHPMAACBMAA(15%) are demonstrated via the sensitive label-free detection of a microRNA cancer biomarker (miR-16) in blood plasma
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10404 - Polymer science
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Analytical Chemistry
ISSN
0003-2700
e-ISSN
—
Volume of the periodical
89
Issue of the periodical within the volume
6
Country of publishing house
US - UNITED STATES
Number of pages
8
Pages from-to
3524-3531
UT code for WoS article
000397478300039
EID of the result in the Scopus database
2-s2.0-85018753537