Copolymer Brush-Based Ultralow-Fouling Biorecognition Surface Platform for Food Safety
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985882%3A_____%2F16%3A00467359" target="_blank" >RIV/67985882:_____/16:00467359 - isvavai.cz</a>
Alternative codes found
RIV/61389013:_____/16:00467359
Result on the web
<a href="http://dx.doi.org/10.1021/acs.analchem.6b02617" target="_blank" >http://dx.doi.org/10.1021/acs.analchem.6b02617</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.analchem.6b02617" target="_blank" >10.1021/acs.analchem.6b02617</a>
Alternative languages
Result language
angličtina
Original language name
Copolymer Brush-Based Ultralow-Fouling Biorecognition Surface Platform for Food Safety
Original language description
Functional polymer coatings that combine the ability to resist nonspecific fouling from complex media with high biorecognition element (BRE) immobilization capacity represent an emerging class of new functional materials for a number of bioanalytical and biosensor technologies for medical diagnostics, security, and food safety. Here, we report on a random copolymer brush surface - poly(CBMAA-ran-HPMAA) - providing high BRE immobilization capacity while simultaneously exhibiting ultralow-fouling behavior in complex food media. We demonstrate that both the functionalization and fouling resistance capabilities of such copolymer brushes can be tuned by changing the surface contents of the two monomer units: nonionic N-(2-hydroxypropyl) methacrylamide (HPMAA) and carboxy-functional zwitterionic carboxybetaine methacrylamide (CBMAA). It is demonstrated that the resistance to fouling decreases with the surface content of CBMAA; poly(CBMAA-ran-HPMAA) brushes with CBMAA molar content up to 15 mol % maintain excellent resistance to fouling from a variety of homogenized foods (hamburger, cucumber, milk, and lettuce) even after covalent attachment of BREs to carboxy groups of CBMAA. The poly(CBMAA 15 mol %-ran-HPMAA) brushes functionalized with antibodies are demonstrated to exhibit fouling resistance from food samples by up to 3 orders of magnitude better when compared with the widely used low-fouling carboxy-functional oligo(ethylene glycol) (OEG)-based alkanethiolate self-assembled monolayers (AT SAMs) and, furthermore, by up to 2 orders of magnitude better when compared with the most successful ultralow-fouling biorecognition coatings - poly(carboxybetaine acrylamide), poly(CBAA). When model SPR detections of food-borne bacterial pathogens in homogenized foods are used, it is also demonstrated that the antibody-functionalized poly(CBMAA 15 mol %-ran-HPMAA) brush exhibits superior biorecognition properties over the poly(CBAA)
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
JA - Electronics and optoelectronics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Analytical Chemistry
ISSN
0003-2700
e-ISSN
—
Volume of the periodical
88
Issue of the periodical within the volume
21
Country of publishing house
US - UNITED STATES
Number of pages
7
Pages from-to
10533-10539
UT code for WoS article
000386991200029
EID of the result in the Scopus database
2-s2.0-84993944709