All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Ectopic assembly of an auxin efflux control machinery shifts developmental trajectories

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389030%3A_____%2F24%3A00601087" target="_blank" >RIV/61389030:_____/24:00601087 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1093/plcell/koae023" target="_blank" >https://doi.org/10.1093/plcell/koae023</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1093/plcell/koae023" target="_blank" >10.1093/plcell/koae023</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Ectopic assembly of an auxin efflux control machinery shifts developmental trajectories

  • Original language description

    Polar auxin transport in the Arabidopsis (Arabidopsis thaliana) root tip maintains high auxin levels around the stem cell niche that gradually decrease in dividing cells but increase again once they transition toward differentiation. Protophloem differentiates earlier than other proximal tissues and employs a unique auxin <canalization> machinery that is thought to balance auxin efflux with retention. It consists of a proposed activator of PIN-FORMED (PIN) auxin efflux carriers, the cAMP-, cGMP- and Calcium-dependent (AGC) kinase PROTEIN KINASE ASSOCIATED WITH BRX (PAX), its inhibitor, BREVIS RADIX (BRX), and PHOSPHATIDYLINOSITOL-4-PHOSPHATE-5-KINASE (PIP5K) enzymes, which promote polar PAX and BRX localization. Because of a dynamic PAX-BRX-PIP5K interplay, the net cellular output of this machinery remains unclear. In this study, we deciphered the dosage-sensitive regulatory interactions among PAX, BRX, and PIP5K by their ectopic expression in developing xylem vessels. The data suggest that the dominant collective output of the PAX-BRX-PIP5K module is a localized reduction in PIN abundance. This requires PAX-stimulated clathrin-mediated PIN endocytosis upon site-specific phosphorylation, which distinguishes PAX from other AGC kinases. An ectopic assembly of the PAX-BRX-PIP5K module is sufficient to cause cellular auxin retention and affects root growth vigor by accelerating the trajectory of xylem vessel development. Our data thus provide direct evidence that local manipulation of auxin efflux alters the timing of cellular differentiation in the root.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10605 - Developmental biology

Result continuities

  • Project

    <a href="/en/project/GF21-08021L" target="_blank" >GF21-08021L: Deep cell biology of plant cell polarity</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Plant Cell

  • ISSN

    1040-4651

  • e-ISSN

    1532-298X

  • Volume of the periodical

    36

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    15

  • Pages from-to

    1791-1805

  • UT code for WoS article

    001170000100001

  • EID of the result in the Scopus database

    2-s2.0-85192027509