Separation theorems for convex polytopes and finitely-generated cones derived from theorems of the alternative
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F12%3AA120142N" target="_blank" >RIV/61988987:17310/12:A120142N - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Separation theorems for convex polytopes and finitely-generated cones derived from theorems of the alternative
Original language description
We derive from Motzkin?s Theorem that a point can be strongly separated by a hyperplane from a convex polytope and a finitely-generated convex cone. We state a similar result for Tucker?s Theorem of the alternative. A generalisation of the residual existence theorem for linear equations which has recently been proved by Rohn [8] is a corollary. We state all the results in the setting of a general vector space over a linearly ordered (possibly skew) field.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BB - Applied statistics, operational research
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
LINEAR ALGEBRA APPL
ISSN
0024-3795
e-ISSN
—
Volume of the periodical
436
Issue of the periodical within the volume
9
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
6
Pages from-to
3784-3789
UT code for WoS article
—
EID of the result in the Scopus database
—