A compendium of Lie structures on tensor products
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F14%3AA1501CXJ" target="_blank" >RIV/61988987:17310/14:A1501CXJ - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
A compendium of Lie structures on tensor products
Original language description
We demonstrate how a simple linear-algebraic technique used earlier to compute low-degree cohomology of current Lie algebras, can be utilized to compute other kinds of structures on such Lie algebras, and discuss further generalizations, applications, and related questions. While doing so, we touch upon such seemingly diverse topics as associative algebras of infinite representation type, Hom-Lie structures, Poisson brackets of hydrodynamic type, Novikov algebras, simple Lie algebras in small characteristics, and Koszul dual operads.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Sciences
ISSN
1573-8795
e-ISSN
—
Volume of the periodical
199
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
23
Pages from-to
266-288
UT code for WoS article
—
EID of the result in the Scopus database
—