All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On Shift Radix Systems over Imaginary Quadratic Euclidean Domains

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F15%3AA1701LK5" target="_blank" >RIV/61988987:17310/15:A1701LK5 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    On Shift Radix Systems over Imaginary Quadratic Euclidean Domains

  • Original language description

    In this paper we generalize the shift radix systems to finite dimensional Hermitian vector spaces. Here the integer lattice is replaced by the direct sum of imaginary quadratic Euclidean domains. We prove in two cases that the set of one dimensional Euclidean shift radix systems with finiteness property is contained in a circle of radius $0.99$ around the origin. Thus their structure is much simpler than the structure of analogous sets

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Acta Cybernetica

  • ISSN

    0324-721X

  • e-ISSN

  • Volume of the periodical

    22

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    HU - HUNGARY

  • Number of pages

    14

  • Pages from-to

    485-498

  • UT code for WoS article

    000383724900014

  • EID of the result in the Scopus database

    2-s2.0-84955499107