On a problem of Pillai with k-generalized Fibonacci numbers and powers of 2
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F18%3AA1901XZF" target="_blank" >RIV/61988987:17310/18:A1901XZF - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00605-018-1155-1" target="_blank" >http://dx.doi.org/10.1007/s00605-018-1155-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00605-018-1155-1" target="_blank" >10.1007/s00605-018-1155-1</a>
Alternative languages
Result language
angličtina
Original language name
On a problem of Pillai with k-generalized Fibonacci numbers and powers of 2
Original language description
For an integer k = 2, let {F ( k) n} n= 0 be the k-generalized Fibonacci sequence which starts with 0,..., 0,1 ( k terms) and each term afterwards is the sum of the k preceding terms. In this paper, we find all integers c having at least two representations as a difference between a k-generalized Fibonacci number and a power of 2 for any fixed k = 4. This paper extends previous work from Ddamulira et al. ( Proc Math Sci 127( 3): 411-421, 2017. https:// doi. org/ 10.1007/ s12044-017-0338-3) for the case k = 2 and Bravo et al. ( Bull Korean Math Soc 54( 3): 069-1080, 2017. https:// doi. org/ 10.4134/ BKMS. b160486) for the case k = 3.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
MONATSH MATH
ISSN
0026-9255
e-ISSN
1436-5081
Volume of the periodical
187
Issue of the periodical within the volume
4
Country of publishing house
AT - AUSTRIA
Number of pages
30
Pages from-to
635-664
UT code for WoS article
000446558400004
EID of the result in the Scopus database
2-s2.0-85040643683