All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Generalized Euler-Genocchi Polynomials and Lucas Numbers

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F20%3AA2102944" target="_blank" >RIV/61988987:17310/20:A2102944 - isvavai.cz</a>

  • Result on the web

    <a href="http://math.colgate.edu/~integers/vol20.html" target="_blank" >http://math.colgate.edu/~integers/vol20.html</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Generalized Euler-Genocchi Polynomials and Lucas Numbers

  • Original language description

    The family of Euler-Genocchi polynomials has been studied recently. We use its generating function to define an extension of this family to generalized Euler-Genocchi polynomials of order m. This family of polynomials contains the generalized Euler and generalized Genocchi polynomials as special members. We derive some combinatorial properties of these polynomials. Moreover, we prove two combinatorial identities involving generalized Euler-Genocchi polynomials and products of Lucas numbers. Some special cases are stated and compared to existing results. Finally, we define the generalized Bernoulli polynomials of order r and m and connect them combinatorially to Fibonacci numbers.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    INTEGERS

  • ISSN

    1553-1732

  • e-ISSN

  • Volume of the periodical

    20

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    CZ - CZECH REPUBLIC

  • Number of pages

    16

  • Pages from-to

    1-16

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-85098449198