All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On polynomials in primes, ergodic averages and monothetic groups

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F24%3AA2503819" target="_blank" >RIV/61988987:17310/24:A2503819 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/article/10.1007/s00605-024-01948-0" target="_blank" >https://link.springer.com/article/10.1007/s00605-024-01948-0</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00605-024-01948-0" target="_blank" >10.1007/s00605-024-01948-0</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On polynomials in primes, ergodic averages and monothetic groups

  • Original language description

    Let G denote a compact monothetic group, and let rho(x)=alpha kx(k)+...+alpha 1 x+alpha 0, where alpha(0),...,alpha(k) are elements of Gone of which is a generator of G. Let(p(n)) n >= 1denote the sequence of rational prime numbers. Suppose f is an element of L (p) (G)for p >1. It is known that if A (N) f(x):=1 /N (N) & sum; (n=1)f(x+rho(p(n))) (N=1,2,...), then the limit lim(n ->infinity)A(N) f(x)exists for almost all x with respect Haar measure. We show that if G is connected then the limit is integral(G)f d lambda. In the case where G is the a-adic integers, which is a totally disconnected group, the limit is described in terms of Fourier multipliers which are generalizations of Gauss sums.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    MONATSH MATH

  • ISSN

    0026-9255

  • e-ISSN

    1436-5081

  • Volume of the periodical

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    AT - AUSTRIA

  • Number of pages

    16

  • Pages from-to

    47-62

  • UT code for WoS article

    001163797700001

  • EID of the result in the Scopus database

    2-s2.0-85185106031