On polynomials in primes, ergodic averages and monothetic groups
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F24%3AA2503819" target="_blank" >RIV/61988987:17310/24:A2503819 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1007/s00605-024-01948-0" target="_blank" >https://link.springer.com/article/10.1007/s00605-024-01948-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00605-024-01948-0" target="_blank" >10.1007/s00605-024-01948-0</a>
Alternative languages
Result language
angličtina
Original language name
On polynomials in primes, ergodic averages and monothetic groups
Original language description
Let G denote a compact monothetic group, and let rho(x)=alpha kx(k)+...+alpha 1 x+alpha 0, where alpha(0),...,alpha(k) are elements of Gone of which is a generator of G. Let(p(n)) n >= 1denote the sequence of rational prime numbers. Suppose f is an element of L (p) (G)for p >1. It is known that if A (N) f(x):=1 /N (N) & sum; (n=1)f(x+rho(p(n))) (N=1,2,...), then the limit lim(n ->infinity)A(N) f(x)exists for almost all x with respect Haar measure. We show that if G is connected then the limit is integral(G)f d lambda. In the case where G is the a-adic integers, which is a totally disconnected group, the limit is described in terms of Fourier multipliers which are generalizations of Gauss sums.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
MONATSH MATH
ISSN
0026-9255
e-ISSN
1436-5081
Volume of the periodical
—
Issue of the periodical within the volume
1
Country of publishing house
AT - AUSTRIA
Number of pages
16
Pages from-to
47-62
UT code for WoS article
001163797700001
EID of the result in the Scopus database
2-s2.0-85185106031