All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Curvature of quaternionic skew‐Hermitian manifolds and bundle constructions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F24%3AA25039AR" target="_blank" >RIV/61988987:17310/24:A25039AR - isvavai.cz</a>

  • Result on the web

    <a href="https://onlinelibrary.wiley.com/doi/10.1002/mana.202400301" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1002/mana.202400301</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/mana.202400301" target="_blank" >10.1002/mana.202400301</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Curvature of quaternionic skew‐Hermitian manifolds and bundle constructions

  • Original language description

    This paper is devoted to a description of the second‐order differential geometry of torsion‐free almost quaternionic skew‐Hermitian manifolds, that is, of quaternionic skew‐Hermitian manifolds . We provide a curvature characterization of such integrable geometric structures, based on the holonomy theory of symplectic connections and we study qualitative properties of the induced Ricci tensor. Then, we proceed with bundle constructions over such a manifold . In particular, we prove the existence of almost hypercomplex skew‐Hermitian structures on the Swann bundle over <jats:italic>M</jats:italic> and investigate their integrability.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    MATH NACHR

  • ISSN

    0025-584X

  • e-ISSN

    1522-2616

  • Volume of the periodical

  • Issue of the periodical within the volume

    27 November 2024

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    26

  • Pages from-to

  • UT code for WoS article

    001364022100001

  • EID of the result in the Scopus database

    2-s2.0-85210354427