Curvature of quaternionic skew‐Hermitian manifolds and bundle constructions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F24%3AA25039AR" target="_blank" >RIV/61988987:17310/24:A25039AR - isvavai.cz</a>
Result on the web
<a href="https://onlinelibrary.wiley.com/doi/10.1002/mana.202400301" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1002/mana.202400301</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/mana.202400301" target="_blank" >10.1002/mana.202400301</a>
Alternative languages
Result language
angličtina
Original language name
Curvature of quaternionic skew‐Hermitian manifolds and bundle constructions
Original language description
This paper is devoted to a description of the second‐order differential geometry of torsion‐free almost quaternionic skew‐Hermitian manifolds, that is, of quaternionic skew‐Hermitian manifolds . We provide a curvature characterization of such integrable geometric structures, based on the holonomy theory of symplectic connections and we study qualitative properties of the induced Ricci tensor. Then, we proceed with bundle constructions over such a manifold . In particular, we prove the existence of almost hypercomplex skew‐Hermitian structures on the Swann bundle over <jats:italic>M</jats:italic> and investigate their integrability.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
MATH NACHR
ISSN
0025-584X
e-ISSN
1522-2616
Volume of the periodical
—
Issue of the periodical within the volume
27 November 2024
Country of publishing house
DE - GERMANY
Number of pages
26
Pages from-to
—
UT code for WoS article
001364022100001
EID of the result in the Scopus database
2-s2.0-85210354427