All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On the $omega$-limit sets of product maps

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F10%3AA1100RIW" target="_blank" >RIV/61988987:17610/10:A1100RIW - isvavai.cz</a>

  • Alternative codes found

    RIV/47813059:19610/10:#0000281

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    On the $omega$-limit sets of product maps

  • Original language description

    Let $omega(cdot)$ denote the union of all $omega$-limit sets of a given map. As the main result of this paper we prove that, for given continuous interval maps $f_1,ldots, f_m$, the set of $omega$-limit points of the product map $f_1 times cdots times f_m$ and the cartesian product of the sets $omega(f_1),ldots, omega(f_m)$ coincide. This result substantially enriches the theory of multidimensional permutation product maps, i.e., maps of the form $F(x_1,ldots, x_m) = (f_{sigma(1)}(x_{sigma(1)}), ldots,f_{sigma(m)}(x_{sigma(m)}))$, where $sigma$ is a permutation of the set of indices ${1,ldots,m}$. Especially, for any such map $F$, we prove that the set $omega(F)$ is closed and we also show that $omega(F)$ cannot be a proper subset of the center of the map $F$. These results solve open questions mentioned, e.g., in [F. Balibrea, J. S. C'{a}novas, A. Linero, {em New results on topological dynamics of antitriangular maps/}, Appl. Gen. Topol.].

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/1M0572" target="_blank" >1M0572: Data, algorithms, decision making</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2010

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Dynamic Systems and Applications

  • ISSN

    1056-2176

  • e-ISSN

  • Volume of the periodical

    19

  • Issue of the periodical within the volume

    3-4

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    12

  • Pages from-to

  • UT code for WoS article

    000285265100019

  • EID of the result in the Scopus database