When are all closed subsets recurrent?
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F17%3AA1801I26" target="_blank" >RIV/61988987:17610/17:A1801I26 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1017/etds.2016.5" target="_blank" >http://dx.doi.org/10.1017/etds.2016.5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/etds.2016.5" target="_blank" >10.1017/etds.2016.5</a>
Alternative languages
Result language
angličtina
Original language name
When are all closed subsets recurrent?
Original language description
In the paper we study relations of rigidity, equicontinuity and pointwise recurrence between an invertible topological dynamical system (t.d.s.) (X,T) and the t.d.s. (K(X),TK) induced on the hyperspace K(X) of all compact subsets of X, and provide some characterizations. Among other examples, we construct a minimal, non-equicontinuous, distal and uniformly rigid t.d.s. and a weakly mixing t.d.s. which induces dense periodic points on the hyperspace K(X) but itself does not have dense distal points, solving in that way a few open questions from earlier articles by Dong, and Li, Yan and Ye.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: IT4Innovations Centre of Excellence</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
ERGOD THEOR DYN SYST
ISSN
0143-3857
e-ISSN
—
Volume of the periodical
37
Issue of the periodical within the volume
7
Country of publishing house
GB - UNITED KINGDOM
Number of pages
32
Pages from-to
2223-2254
UT code for WoS article
000409428600010
EID of the result in the Scopus database
—