Furstenberg families, sensitivity and the space of probability measures
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F17%3AA1801JP6" target="_blank" >RIV/61988987:17610/17:A1801JP6 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1088/1361-6544/aa5495" target="_blank" >http://dx.doi.org/10.1088/1361-6544/aa5495</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1361-6544/aa5495" target="_blank" >10.1088/1361-6544/aa5495</a>
Alternative languages
Result language
angličtina
Original language name
Furstenberg families, sensitivity and the space of probability measures
Original language description
In this paper we study relations of various types of sensitivity between a t.d.s. (X, T) and t.d.s. (M(X), T M ) induced by (X, T) on the space of probability measures. Among other results, we prove that $mathcal{F}$ -sensitivity of (M(X), T M ) implies the same of (X, T) and the converse is also true when $mathcal{F}$ is a filter. We show that (X, T) is multi-sensitive if and only if so is (M(X), T M ) and that (X, T) is $mathcal{F}$ -sensitive if and only if $left({{M}_{n}}(X),{{T}_{M}}right)$ is $mathcal{F}$ -sensitive (for some/all $nin mathbb{N}$ ). We finish the paper providing an example of a minimal syndetically sensitive t.d.s. or a Li-Yorke sensitive t.d.s. such that induced t.d.s. fails to be sensitive.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: IT4Innovations Centre of Excellence</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nonlinearity
ISSN
0951-7715
e-ISSN
—
Volume of the periodical
30
Issue of the periodical within the volume
3
Country of publishing house
UM - UNITED STATES MINOR OUTLYING ISLANDS
Number of pages
18
Pages from-to
987-1005
UT code for WoS article
000394514800001
EID of the result in the Scopus database
—