All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Topological properties of Lorenz maps derived from unimodal maps

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F20%3AA21021V2" target="_blank" >RIV/61988987:17610/20:A21021V2 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.tandfonline.com/doi/full/10.1080/10236198.2020.1760260" target="_blank" >https://www.tandfonline.com/doi/full/10.1080/10236198.2020.1760260</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1080/10236198.2020.1760260" target="_blank" >10.1080/10236198.2020.1760260</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Topological properties of Lorenz maps derived from unimodal maps

  • Original language description

    A symmetric Lorenz map is obtained by ``flipping'' one of the two branches of a symmetric unimodal map.We use this to derive a Sharkovsky-like theorem for symmetric Lorenz maps, and also to findcases where the unimodal map restricted to the critical omega-limit set is conjugate to a Sturmian shift.This has connections with properties of unimodal inverse limit spaces embedded as attractors of some planar homeomorphisms.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10100 - Mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    J DIFFER EQU APPL

  • ISSN

    1023-6198

  • e-ISSN

  • Volume of the periodical

    26

  • Issue of the periodical within the volume

    8

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    18

  • Pages from-to

    1174-1191

  • UT code for WoS article

    000544480200001

  • EID of the result in the Scopus database

    2-s2.0-85086514034