All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Numerical solution of a linear fuzzy Volterra integral equation of the second kind with weakly singular kernels

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F22%3AA2302DQ4" target="_blank" >RIV/61988987:17610/22:A2302DQ4 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/article/10.1007/s00500-022-07477-y#Sec3" target="_blank" >https://link.springer.com/article/10.1007/s00500-022-07477-y#Sec3</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00500-022-07477-y" target="_blank" >10.1007/s00500-022-07477-y</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Numerical solution of a linear fuzzy Volterra integral equation of the second kind with weakly singular kernels

  • Original language description

    In this paper, we consider a linear fuzzy Volterra integral equation of the second kind with a weakly singular kernel which may change sign in the domain of integration. We propose piecewise spline collocation methods with a graded mesh. By increasing the number of collocation points, we show that the numerical solution exists and converges to the exact solution. We obtain exact convergence rates depending on the smoothness of the solution and on the grading parameter of the mesh. We give sufficient conditions for the fuzziness of the approximate solution. The proposed method is illustrated by numerical examples that confirm the theoretical convergence estimates.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

    <a href="/en/project/EF17_049%2F0008414" target="_blank" >EF17_049/0008414: Centre for the development of Artificial Intelligence Methods for the Automotive Industry of the region</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Soft Computing

  • ISSN

    14327643

  • e-ISSN

  • Volume of the periodical

  • Issue of the periodical within the volume

    22

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    14

  • Pages from-to

    12009-12022

  • UT code for WoS article

    000850419500004

  • EID of the result in the Scopus database

    2-s2.0-85139254578