Numerical solution of a linear fuzzy Volterra integral equation of the second kind with weakly singular kernels
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F22%3AA2302DQ4" target="_blank" >RIV/61988987:17610/22:A2302DQ4 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1007/s00500-022-07477-y#Sec3" target="_blank" >https://link.springer.com/article/10.1007/s00500-022-07477-y#Sec3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00500-022-07477-y" target="_blank" >10.1007/s00500-022-07477-y</a>
Alternative languages
Result language
angličtina
Original language name
Numerical solution of a linear fuzzy Volterra integral equation of the second kind with weakly singular kernels
Original language description
In this paper, we consider a linear fuzzy Volterra integral equation of the second kind with a weakly singular kernel which may change sign in the domain of integration. We propose piecewise spline collocation methods with a graded mesh. By increasing the number of collocation points, we show that the numerical solution exists and converges to the exact solution. We obtain exact convergence rates depending on the smoothness of the solution and on the grading parameter of the mesh. We give sufficient conditions for the fuzziness of the approximate solution. The proposed method is illustrated by numerical examples that confirm the theoretical convergence estimates.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/EF17_049%2F0008414" target="_blank" >EF17_049/0008414: Centre for the development of Artificial Intelligence Methods for the Automotive Industry of the region</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Soft Computing
ISSN
14327643
e-ISSN
—
Volume of the periodical
—
Issue of the periodical within the volume
22
Country of publishing house
DE - GERMANY
Number of pages
14
Pages from-to
12009-12022
UT code for WoS article
000850419500004
EID of the result in the Scopus database
2-s2.0-85139254578