Characterization of decomposition integrals extending Lebesgue integral
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F22%3AA2302FUY" target="_blank" >RIV/61988987:17610/22:A2302FUY - isvavai.cz</a>
Result on the web
<a href="https://linkinghub.elsevier.com/retrieve/pii/S016501142100138X" target="_blank" >https://linkinghub.elsevier.com/retrieve/pii/S016501142100138X</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fss.2021.04.015" target="_blank" >10.1016/j.fss.2021.04.015</a>
Alternative languages
Result language
angličtina
Original language name
Characterization of decomposition integrals extending Lebesgue integral
Original language description
Decomposition integrals provide a framework for non-linear integrals that include Choquet, Shilkret, the PAN, and the concave integrals. All of these integrals found their applications in mathematics, notably in decision-making and economy. An important class of decomposition integrals is the class of integrals extending Lebesgue integral in the sense that the decomposition integral with respect to classical measures coincides with Lebesgue integral. In this paper, we consider finite spaces X only and discuss some necessary and sufficient conditions for this property. Also, some construction methods are given and exemplified.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Fuzzy Sets and Systems
ISSN
0165-0114
e-ISSN
—
Volume of the periodical
—
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
13
Pages from-to
56-68
UT code for WoS article
000752563000005
EID of the result in the Scopus database
—