All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A new class of decomposition integrals on finite spaces

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F22%3A00564670" target="_blank" >RIV/67985556:_____/22:00564670 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0888613X22001165?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0888613X22001165?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ijar.2022.08.004" target="_blank" >10.1016/j.ijar.2022.08.004</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A new class of decomposition integrals on finite spaces

  • Original language description

    A new type of decomposition integral is introduced by using a family of decomposition integrals based on the collections relating to partitions and maximal chains of sets. This new integral extends the Lebesgue integral, and it is different from those well-known decomposition integrals, such as the Choquet, concave, pan-, Shilkret integrals and PCintegral. In the structure of a lattice on the class of decomposition integrals, the introduced decomposition integral is between the Choquet integral and the concave integral, and also between the pan-integral and the concave integral, and it is a lower bound of PC-integral. The coincidences among several well-known integrals and this new integral are also shown.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    International Journal of Approximate Reasoning

  • ISSN

    0888-613X

  • e-ISSN

    1873-4731

  • Volume of the periodical

    149

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    14

  • Pages from-to

    192-205

  • UT code for WoS article

    000852046200003

  • EID of the result in the Scopus database

    2-s2.0-85136662109