All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Intersection over Union with smoothing for bounding box regression

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F23%3AA2402KWI" target="_blank" >RIV/61988987:17610/23:A2402KWI - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-031-43078-7_17" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-43078-7_17</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-43078-7_17" target="_blank" >10.1007/978-3-031-43078-7_17</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Intersection over Union with smoothing for bounding box regression

  • Original language description

    We focus on the construction of a loss function for the bounding box regression. The Intersection over Union (IoU) metric is improved to converge faster, to make the surface of the loss function smooth and continuous over the whole searched space, and to reach a more precise approximation of the labels. The main principle is adding a smoothing part to the original IoU, where the smoothing part is given by a linear space with values that increases from the ground truth bounding box to the border of the input image, and thus covers the whole spatial search space. We show the motivation and formalism behind this loss function and experimentally prove that it outperforms IoU, DIoU, CIoU, and SIoU by a large margin. We experimentally show that the proposed loss function is robust with respect to the noise in the dimension of ground truth bounding boxes. The reference implementation is available at gitlab.com/irafm-ai/smoothing-iou.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Advances in Computational Intelligence. IWANN 2023. Lecture Notes in Computer Science, vol 14135

  • ISBN

    978-3-031-43077-0

  • ISSN

    03029743

  • e-ISSN

  • Number of pages

    11

  • Pages from-to

    206-216

  • Publisher name

    Springer, Cham

  • Place of publication

  • Event location

    Ponta Delgada, Portugal

  • Event date

    Jun 19, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article