Intersection over Union with smoothing for bounding box regression
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F23%3AA2402KWI" target="_blank" >RIV/61988987:17610/23:A2402KWI - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/chapter/10.1007/978-3-031-43078-7_17" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-43078-7_17</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-43078-7_17" target="_blank" >10.1007/978-3-031-43078-7_17</a>
Alternative languages
Result language
angličtina
Original language name
Intersection over Union with smoothing for bounding box regression
Original language description
We focus on the construction of a loss function for the bounding box regression. The Intersection over Union (IoU) metric is improved to converge faster, to make the surface of the loss function smooth and continuous over the whole searched space, and to reach a more precise approximation of the labels. The main principle is adding a smoothing part to the original IoU, where the smoothing part is given by a linear space with values that increases from the ground truth bounding box to the border of the input image, and thus covers the whole spatial search space. We show the motivation and formalism behind this loss function and experimentally prove that it outperforms IoU, DIoU, CIoU, and SIoU by a large margin. We experimentally show that the proposed loss function is robust with respect to the noise in the dimension of ground truth bounding boxes. The reference implementation is available at gitlab.com/irafm-ai/smoothing-iou.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Advances in Computational Intelligence. IWANN 2023. Lecture Notes in Computer Science, vol 14135
ISBN
978-3-031-43077-0
ISSN
03029743
e-ISSN
—
Number of pages
11
Pages from-to
206-216
Publisher name
Springer, Cham
Place of publication
—
Event location
Ponta Delgada, Portugal
Event date
Jun 19, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—