On conditional monotonicities of interval-valued functions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F24%3AA25038K7" target="_blank" >RIV/61988987:17610/24:A25038K7 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1007/s40314-024-02715-5" target="_blank" >https://link.springer.com/article/10.1007/s40314-024-02715-5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s40314-024-02715-5" target="_blank" >10.1007/s40314-024-02715-5</a>
Alternative languages
Result language
angličtina
Original language name
On conditional monotonicities of interval-valued functions
Original language description
This paper introduces the concept of conditional monotonicity and other related relaxed monotonicities within the framework of intervals equipped with admissible orders. It generalizes the work of Sesma-Sara et al., who introduced weak/directional monotonicity on intervals endowed with the Kulisch–Miranker order, and the work of Santiago et al., who introduced the notion of g-weak monotonicity in the fuzzy setting. The paper also explores properties of conditional monotonicities, introduce the notion of ordinal sum for a family of functions and examines the connections between conditional monotonicity, ordinal sums and implications.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
COMPUTATIONAL & APPLIED MATHEMATICS
ISSN
2238-3603
e-ISSN
1807-0302
Volume of the periodical
—
Issue of the periodical within the volume
4
Country of publishing house
BR - BRAZIL
Number of pages
24
Pages from-to
—
UT code for WoS article
001207756600004
EID of the result in the Scopus database
2-s2.0-85191296526