Intuitive Spatial Tactile Feedback for Better Awareness about Robot Trajectory during Human-Robot Collaboration
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F21%3A10247904" target="_blank" >RIV/61989100:27230/21:10247904 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.3390/s21175748" target="_blank" >https://doi.org/10.3390/s21175748</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/s21175748" target="_blank" >10.3390/s21175748</a>
Alternative languages
Result language
angličtina
Original language name
Intuitive Spatial Tactile Feedback for Better Awareness about Robot Trajectory during Human-Robot Collaboration
Original language description
In this work, we extend the previously proposed approach of improving mutual perception during human-robot collaboration by communicating the robot's motion intentions and status to a human worker using hand-worn haptic feedback devices. The improvement is presented by introducing spatial tactile feedback, which provides the human worker with more intuitive information about the currently planned robot's trajectory, given its spatial configuration. The enhanced feedback devices communicate directional information through activation of six tactors spatially organised to represent an orthogonal coordinate frame: the vibration activates on the side of the feedback device that is closest to the future path of the robot. To test the effectiveness of the improved human-machine interface, two user studies were prepared and conducted. The first study aimed to quantitatively evaluate the ease of differentiating activation of individual tactors of the notification devices. The second user study aimed to assess the overall usability of the enhanced notification mode for improving human awareness about the planned trajectory of a robot. The results of the first experiment allowed to identify the tactors for which vibration intensity was most often confused by users. The results of the second experiment showed that the enhanced notification system allowed the participants to complete the task faster and, in general, improved user awareness of the robot's movement plan, according to both objective and subjective data. Moreover, the majority of participants (82%) favoured the improved notification system over its previous non-directional version and vision-based inspection.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20204 - Robotics and automatic control
Result continuities
Project
<a href="/en/project/EF17_049%2F0008425" target="_blank" >EF17_049/0008425: A Research Platform focused on Industry 4.0 and Robotics in Ostrava Agglomeration</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Sensors. Vol. 20
ISSN
1424-8220
e-ISSN
—
Volume of the periodical
21
Issue of the periodical within the volume
17
Country of publishing house
CH - SWITZERLAND
Number of pages
26
Pages from-to
—
UT code for WoS article
000694474900001
EID of the result in the Scopus database
2-s2.0-85113433571