An Improvement of Non-Linear Neuro-Fuzzy Model Properties
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F01%3A00000961" target="_blank" >RIV/61989100:27240/01:00000961 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
An Improvement of Non-Linear Neuro-Fuzzy Model Properties
Original language description
A fuzzy neural network is constructed based on fuzzy model Takagi-Sugeno type. By learning of tne neural network we can tune of embedded initial fuzzy model. To show the applicability of new method and to make a possibility to real system modelling the fuzzy neural network program tool FUZNET is presented
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
JB - Sensors, detecting elements, measurement and regulation
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2001
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Neural Network World
ISSN
1210-0552
e-ISSN
—
Volume of the periodical
11
Issue of the periodical within the volume
5
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
112
Pages from-to
503-523
UT code for WoS article
—
EID of the result in the Scopus database
—