Clustering Categorical Data Using a Swarm-based Method
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F09%3A86077774" target="_blank" >RIV/61989100:27240/09:86077774 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Clustering Categorical Data Using a Swarm-based Method
Original language description
The K-Modes algorithm is one of the most popular clustering algorithms in dealing with categorical data. But the random selection of starting centers in this algorithm may lead to different clustering results and falling into local optima. In this paperwe proposed a swarm-based K-Modes algorithm. The experimental results over two well known Soybean and Congressional voting categorical data sets show that our method can find the optimal global solutions and can make up the K-Modes shortcoming.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
World Congress on Nature & Biologically Inspired Computing, 2009. NaBIC 2009
ISBN
978-1-4244-5053-4
ISSN
—
e-ISSN
—
Number of pages
5
Pages from-to
—
Publisher name
IEEE Computer Society
Place of publication
Los Alamitos, California
Event location
Indie
Event date
Dec 9, 2009
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000288686500309