PATIENT-ADAPTED AND INTER-PATIENT ECG CLASSIFICATION USING NEURAL NETWORK AND GRADIENT BOOSTING
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F18%3A10244587" target="_blank" >RIV/61989100:27240/18:10244587 - isvavai.cz</a>
Result on the web
<a href="http://nnw.cz/doi/2018/NNW.2018.28.015.pdf" target="_blank" >http://nnw.cz/doi/2018/NNW.2018.28.015.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14311/NNW.2018.28.015" target="_blank" >10.14311/NNW.2018.28.015</a>
Alternative languages
Result language
angličtina
Original language name
PATIENT-ADAPTED AND INTER-PATIENT ECG CLASSIFICATION USING NEURAL NETWORK AND GRADIENT BOOSTING
Original language description
Heart disease diagnosis is an important non-invasive technique. Therefore, there exists an effort to increase the accuracy of arrhythmia classification based on ECG signals. In this work, we present a novel approach of heart arrhythmia detection. The model consists of two parts. The first part extracts important features from raw ECG signal using Auto-Encoder Neural Network. Extracted features obtained by Auto-Encoder represent an input for the second part of the model, the Gradient Boosting and Feedforward Neural Network classifiers. For comparison purposes, we evaluated our approach by using MIT-BIH ECG database and also following recommendations of the Association for the Advancement of Medical Instrumentation (AAMI) for ECG class labeling. We divided our experiment into two scenarios. The first scenario represents the classification task for the patient-adapted paradigm and the second one was dedicated to the inter-patient paradigm. We compared the measured results to the state-of-the-art methods and it shows that our method outperforms the state-of-the art methods in the Ventricular Ectopic (VEB) class for both paradigms and Supraventricular Ectopic (SVEB) class in the inter-patient paradigm.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Neural Network World
ISSN
1210-0552
e-ISSN
—
Volume of the periodical
28
Issue of the periodical within the volume
3
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
14
Pages from-to
241-254
UT code for WoS article
000440210500004
EID of the result in the Scopus database
—