A boundary element method for homogenization of periodic structures
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F20%3A10243364" target="_blank" >RIV/61989100:27240/20:10243364 - isvavai.cz</a>
Alternative codes found
RIV/61989100:27740/20:10243364
Result on the web
<a href="https://onlinelibrary.wiley.com/doi/full/10.1002/mma.5882" target="_blank" >https://onlinelibrary.wiley.com/doi/full/10.1002/mma.5882</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/mma.5882" target="_blank" >10.1002/mma.5882</a>
Alternative languages
Result language
angličtina
Original language name
A boundary element method for homogenization of periodic structures
Original language description
Homogenized coefficients of periodic structures are calculated via an auxiliary partial differential equation in the periodic cell. Typically, a volume finite element discretization is employed for the numerical solution. In this paper, we reformulate the problem as a boundary integral equation using Steklov-Poincaré operators. The resulting boundary element method only discretizes the boundary of the periodic cell and the interface between the materials within the cell. We prove that the homogenized coefficients converge super-linearly with the mesh size, and we support the theory with examples in two and three dimensions. (C) 2019 John Wiley & Sons, Ltd.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematical Methods in the Applied Sciences
ISSN
0170-4214
e-ISSN
—
Volume of the periodical
43
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
18
Pages from-to
1035-1052
UT code for WoS article
000501531400001
EID of the result in the Scopus database
2-s2.0-85076376757