All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Medical Image Analysis with NVIDIA Jetson GPU Modules

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F22%3A10249012" target="_blank" >RIV/61989100:27240/22:10249012 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-030-84910-8_25" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-84910-8_25</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-84910-8_25" target="_blank" >10.1007/978-3-030-84910-8_25</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Medical Image Analysis with NVIDIA Jetson GPU Modules

  • Original language description

    Medical imaging and image analysis are important elements of modern diagnostic and treatment methods. Intelligent image processing, pattern recognition, and data analysis can be leveraged to introduce a new level of detection, segmentation, and, in general, understanding to medical image analysis. However, modern image analysis methods such as deep neural networks are often connected with significant computational complexity, slowing their adoption. Recent embedded systems such as the NVIDIA Jetson general-purpose GPUs became a viable platform for efficient execution of some computational models. This work analyzes the performance and time and energy costs of several neural models for medical image analysis on different kinds of NVIDIA Jetson modules. The experiments are performed with the lung X-ray medical images in connection with the COVID-19 disease. (C) 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF17_049%2F0008425" target="_blank" >EF17_049/0008425: A Research Platform focused on Industry 4.0 and Robotics in Ostrava Agglomeration</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Lecture Notes in Networks and Systems. Volume 312

  • ISBN

    978-3-030-84909-2

  • ISSN

    2367-3370

  • e-ISSN

    2367-3389

  • Number of pages

    10

  • Pages from-to

    233-242

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Tchaj-čung

  • Event date

    Sep 1, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000704003000025