All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Robust Control of SEDCM by Fuzzy-PSO

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10254577" target="_blank" >RIV/61989100:27240/23:10254577 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/2079-9292/12/2/335" target="_blank" >https://www.mdpi.com/2079-9292/12/2/335</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/electronics12020335" target="_blank" >10.3390/electronics12020335</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Robust Control of SEDCM by Fuzzy-PSO

  • Original language description

    Industries have many rotational operations that are used for design, transport, lift, drilling, rolling, robotics, and many other applications. These rotating applications require a proper controller for accurate control of the operation. Separately excited DC motors (SEDCMs) are versatile and have various industrial operations because of their specific speed control characteristics. So, for smooth and accurate operation of an SEDC motor, controllers should be used. PI and PID controllers are used in many cases, but they are ineffective for nonlinear load operation. A fuzzy controller is a heuristic controller and can provide automatic control of the operation. Its operation depends on the selection of the correct membership values. This work proposes a novel particle swarm optimization (PSO) technique that would provide the optimum value of the membership for fuzzy controllers for optimum control of the industrial processes. To obtain SEDC results, MATLAB simulation was performed, and the fuzzy controller with novel PSO was implemented. A fuzzy PSO controller used for motor speed control operation obtains a rise time of 0.00026 s, settling time of 0.000214 s, maximum overshoot of zero, and delay time of 0.016 s, which are the best values when compared to PID and PID-Fuzzy controllers. It is observed that the results obtained from the separately excited DC motor using a fuzzy PSO controller improve the dynamic behavior of the motor that so it smoothly tracks the required speed without any more overshoot or oscillation than the PID controller. Such dynamic, stable operation of the motor makes it perfect for industrial as well as household operations.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20200 - Electrical engineering, Electronic engineering, Information engineering

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Electronics

  • ISSN

    2079-9292

  • e-ISSN

    2079-9292

  • Volume of the periodical

    12

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    17

  • Pages from-to

    "nečislovano"

  • UT code for WoS article

    000916985000001

  • EID of the result in the Scopus database

    2-s2.0-85146745776